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Abstract--This paper focuses on the effect of natural convection on the accuracy of diffusion coefficient 
measurements in concentrated liquid alloys. This convective effect is modelled using the concept of effective 
diffusivity, introduced in a former work for the case of dilute systems. Our computer simulations support 
the validity of this approach and show that it is very difficult in practice to reach conditions of negligible 
convective solute transport. The possibility of realizing the measurements of diffusion coefficients in 

microgravity is also discussed. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

The modelling and the understanding of  a variety of  
processes rely on the knowledge of  transfer 
coefficients. However,  an accurate measurement of  
these parameters is very difficult, especially when the 
diffusivities are very low, e.g. for the case of  liquid 
phase solute transport. Indeed, the unavoidable con- 
vective flows induced by the interaction of  density 
gradients with gravity often lead to significant errors. 
An open question is thus to assess the possibility of  
realizing these measurements on earth, the alternative 
being to carry out  the experiments in space where the 
intensity of  gravity is reduced by a factor ranging from 
103 to 106 . 

The most commonly  used methods for liquid metals 
or semiconductors are the long capillary or shear cell 
techniques [1]. In both cases, for isothermal diffusion 
coefficient measurements, a one-dimensional con- 
centration step is followed over time in its devel- 
opment, and the sample is solidified at the end of  the 
experiment. A composit ional average is taken over 
slices normal to the capillary axis and the resulting 
concentration profile fitted by a Gaussian error func- 
tion under the assumption that the diffusion 
coefficient is independent of  concentration. 

In practice, thin vertical capillaries are generally 
used to limit convective solute transport. However,  
our former work on the topic [2] indicates that an 
optimized set-up is necessary to guarantee purely 
diffusive conditions in dilute alloys, since unavoidable 
lateral temperature gradients always induce fluid 
motion. To reach such a conclusion, we relied on 
a coupled numerical-scaling analysis approach and 
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showed that the error induced by the convective 
motion scaled with the square of  the non-dimensional 
product Gr x Sc, where the Grashof  number Gr mea- 
sures the intensity of  the flow and the Schmidt number 
Sc the ratio between viscosity and diffusivity. 

We also found that an 'effective' diffusion 
coefficient could be used to understand the physics of  
transport phenomena; indeed, even with significant 
convective flow, the simulated composit ion profiles 
keep a Gaussian error function appearance. In prac- 
tice, this means that there is no way to determine a 
posteriori whether a given experiment has been carried 
out under favourable conditions. In all cases, the out- 
put of  the procedure yields the effective diffusion 
coefficient, which may be significantly higher than the 
actual diffusion coefficient. 

In this paper, we focus on concentrated systems 
where, according to a mechanism proposed by Hart  
[3], the coupling between the thermal and solutal fields 
may lead to a significant reduction of  the convection 
velocity. Using numerical and scaling arguments, we 
shall show that the effective diffusivity formalism can 
also be applied in concentrated systems and discuss 
the practical implications in terms of  attainable accu- 
racy in ground based and space experiments. 

EFFECTIVE DIFFUSIVITY AND SOLUTAL 
DAMPING 

As carried out previously [2], we modelled the 
actual, cylindrical geometry with an idealized, two- 
dimensional planar cell schematized in Fig. 1. In the 
present problem, the lateral temperature difference 
acts as convective driving force. The fluid velocity V, 
solution to the Navier--Stokes equations, contributes 
to mass transport and the solute conservation equa- 
tion can be written as 
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NOMENCLATURE 

C alloy composition V 
C~,C~ end concentrations of the diffusing W 

couple X. Z 
D actual diffusion coefficient 
D* apparent diffusion coefficient 
D* apparent diffusion coefficient without 

solutal stabilization [~s 
G longitudinal composition gradient /~r 
g gravity AC 
Gr Grashofnumber ,  Gr = [ITgATnH~/v: 
H,L width and length of the cavity ATu 
M Hart 's  parameter, M = ( - Ras/4) ~ 4 6(t) 
p pressure 
Ras solutal Rayleigh number v 

Ras = flsgGH4/vD p 
Sc Schmidt number, S o =  v/D 
t time 

velocity vector 
longitudinal velocity component 
transverse and longitudinal 
coordinates. 

Greek symbols 
solutal expansion coefficient 
thermal expansion coefficient 
maximum concentration range of 
diffusing couple, AC = Ct - C0 
lateral temperature difference 
length scale of established longitudinal 
concentration gradient 
kinematic viscosity of the fluid 
mass density of the alloy 
velocity reduction with solutal 
stabilization. 

? C / ~ t + ( V ' V ) C  = DV:C (J) 

with D standing for the diffusion coefficient. For the 
concentrated systems considered in this text, the fluid 
velocity V depends on solute repartition. Quite gener- 
ally, assuming that the mass density of the alloy is 
given by p = p~, [1 --[:IT(T-- To) + f l s ( C -  C~)] and that 
the Boussinesq approximation holds, the Navier 
Stokes equations can be written as 

~V/¢?t + (V" V)V = - Vp!p,, + vV:V 

+ [ 1 - / : t v ( T -  To)+[3s(C-C,,)]g (2) 

with p, 3T, [:ts, v and g, respectively, standing tor the 
pressure, thermal and solutal expansion coefficients, 
kinematic viscosity and gravity. To fully specify the 
problem, one also needs the continuity equation, that 
for an isochore fluid reduces to 

b 

,H,,, z¼ ] 

/ 1  

/ I  6 

( o , o )  

C" C o C' I 

Fig. I. Sketch of the model cavity and typical vertical com- 
position profile. 

V- V = 0. (3) 

We used the same boundary and initial conditions 
as previously [2], namely 

t = O ( ' = C o  Z <~ L/2 C =  Ci Z > L/2 

(4) 

top/bottomwalls  ~T,,'~Z = 0 <?C/~?Z = 0 V = 0 

(5a) 

left w a l l ( X = 0 )  T =  T, ? C / ~ X = O  V = O  

(5b) 

r i gh twa l l (X=  H) T =  7],+ATH <?C/~?X = 0 

V = 0. (5c) 

The heat transport equation was also solved 
numerically, but with low Prandtl number fluids, such 
as metals or semiconductors, the ratio of thermal to 
solutal diffusivity is very high and a limited con- 
vect ion--by solute transport standards should not 
affect the heat flow. Indeed, we have seen [2] that a 
constant lateral temperature gradient was established 
between the side walls. 

In our previous work [2], we showed scaling analy- 
sis arguments that the additional contribution to the 
diffusion coefficient coming from convective transport 
scaled with the non-dimensional group I~2H2/D 2, I~ 
standing for the lateral average of the vertical velocity 
component.  This result was confirmed by means of 
numerical simulations so that the 'effective' diffusion 
coefficient D*, i.e. the one that would be deduced from 
the composition profile at the end of the experiment 
assuming purely diffusive conditions, could be written 
a s  
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D* = D[1 +ctff'2H2/D2], (6) 

being a numerical constant introduced to match the 
numerical results. In the dilute alloy problem con- 
sidered previously, if'scaled with the thermal Grashof 
number, so that the group W2H2/D 2 was seen to be 
proportional to the square of the product of the 
Grashof and Schmidt numbers, defined as 

Gr = f l T g A T H H 3 / y  2 Sc = v/D. (7) 

In order to test the validity of equation (6) in the 
presence of solutal damping, we need to estimate the 
reduction of velocity induced by the coupling of the 
mass and momentum transport equations. To do so, 
we rely on the work of Hart [3] who, dealing with the 
quite different problem of sideways diffusive insta- 
bility, had previously considered a configuration simi- 
lar to that of Fig. 1. Assuming the vertical composition 
gradient G to be constant, he obtained an analytical, 
parallel flow solution to the set of equations (1)-(3) 
and (5), the non-dimensional velocity being given by 

W = [cosh (Mx) sin (Mx) 

- A  sinh (Mx) cos (Mx)]/2M 3B, (8) 

where A = tan (M/2)/tanh (M/2) and B = sin(M/2)/ 
sinh (M/2) + cosh (M/2)/cos (M/2) are constants 
depending on the sole parameter 

M = ( -  Ras/4) 1/4 

Ras being the solutal Rayleigh number, Ras = 
flsgGH4/vD. The lateral composition difference 
induced by the thermal flow tends to reduce the den- 
sity gradient and thus the mean velocity, and we can 
define a damping factor 

= ff'/ff'(Ras = 0). (9) 

In the above expression, I~ (Ras = 0) is the average 
velocity of the thermally driven parallel flow, equal to 
(v/H) (Gr/192) [2]. From equations (8) and (9), we 
get 

= 9~6 f(M) (10) 
M - 

with tiM) equal to 

Isinh (M/2) cosh (M/2)+sin (M/2) cos (M/2) 
--sinh (M/2) cos (M/2 ) -  sin (M/2) cosh (M/2)I 

I sinh (M/2) cosh (M/2)+ sin (M/2) cos (M/2)I 

However, Hart's analysis cannot be applied directly 
to our present diffusion coefficient measurement prob- 
lem, the main difference being that the vertical com- 
position gradient G is neither uniform (see Fig. lb), 
nor constant in time. To build a link between our 
transport configuration and Hart's results, let us 
assume that at the end of the experiment 

G = (AC/2)/~(t), (11) 

AC standing for the difference between the top and 

bottom concentrations, AC = C~ - Co, and 6(0 for the 
length scale of the central region where the com- 
position gradient is established (see Fig. 1). In our 
previous work [2], the numerical simulations yielded 

6(0 ~- 1.8(O*t) 1/2 (12) 

It should be noted that the factor 1.8 in the above 
expression can be identified with x/n, as proposed by 
Carslaw and Jaeger for the related problem of heat 
diffusion in a semi-infinite solid [4]. We could then 
derive the solutal Rayleigh number and the damping 
factor ( to fit the effective diffusivity formula [equation 
(6)]. However, since 6(t) depends on D*, we would 
face an implicit equation; for the sake of simplicity, 
we shall take D* = D in equation (12), a hypothesis 
certainly valid when convection is not too strong. 

The assumptions required to derive a damping fac- 
tor in our present transport configuration may seem 
questionable, but we shall later see that the rather 
arbitrary choices of equations (11) and (12) have only 
a limited impact on the final result. Back to the effect 
of thermosolutal convection on effective diffusivity, 
inserting equation (9) in equation (6) yields 

D* = D[1 + ~ 2  l~2(Ras = O)H2/D2]. (13) 

For a clear presentation of the results, it is inter- 
esting to introduce the effective diffusion coefficient 
without solutal stabilization D~'. Rearranging equa- 
tions (6) and (13), we get 

(D*--D)/ (D*-  D) = ~2. (14) 

For low values of M, D* should remain close to D*, 
whereas at large M, one should eventually fall back 
on the true diffusion coefficient D. The ratio on the 
right hand side of equation (14) should thus vary 
between 0 and 1, depending solely on M. In other 
words, the perturbation induced by thermally driven 
convection is accounted for by the D* parameter and 
the effect of solutal stabilization should simply be the 
square of the damping factor. 

NUMERICAL SIMULATIONS AND DISCUSSION 

To test these predictions, we performed numerical 
simulations of the coupled momentum and mass 
transfer problem formulated by equations (1)-(5). As 
carried out previously, we used the FIDAP finite 
element code, implemented on an HP 730 work- 
station. Typical mesh dimensions were 26 × 3 (nine- 
nodes quadrilateral elements). We chose a quasi- 
Newton method, with implicit time scheme to obtain 
the solution. The model cavity was sufficiently long to 
ensure that the results did not depend on the aspect 
ratio H/L. As carried out in ref. [2], the apparent 
diffusion coefficient D* was estimated from a error 
function best fit procedure at the end of the simulated 
experiment. 

Simulations were carried out for two different ther- 
mal configurations, corresponding to values of the 
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a b 

Fig. 2. Vertical velocity contours in the middle )art of the 
cavity as obtained from the FIDAP simulations in the case 
Gr= 3 for two values of the solutal stabilization [(a) 
#sAC = 10 ~. HV,~,~,~/v- 2.3 10 : and (b) # sAC-10  + 

HV,,~,,~/v- 310 ~]. 

Gr × Sc product of  90 and 360, the associated relative 
errors, i .e .(D*/D)- 1, being, respectively', 2 and 32% 
[2]. The physico chemical parameters used were 
fll-~ 10 4K ' , v = 3 . 6 1 0  7m2s t , O = l . 2 1 0  ~m'- 
s ~, the cavity width and length being, respectively, 
H = 7.5 l0 + m and L = 0.1 m. The main parameter 
in the present study is the product #sAC, that charac- 
terizes the efficiency of  solutal damping. 

The major change with respect to the dilute alloy 
configuration solved in ref. [2] concerns the hydro- 
dynamic field. At high values of  #sAC', a significant 
damping is observed around mid-cavity where the 
axial composition gradient is high. On the other hand. 
in the end parts, no stabilization occurs and the fluid 
velocity is governed by the thermal Grashof  number 
of  equation (7). 

As a consequence, the body force in the Navier 
Stokes equations being dependent on the Z-coor- 
dinate, the conditions for purely unidirectional flow 
are not fulfilled. Indeed, for #sAC >7 l0 2 the velocity 
field is significantly distorted (see Fig. 2), but it should 
be noted that the convective loop never breaks down 
into smaller cells. 

Shown in Fig. 3 is the variation of (D* D)/ 
( D * - D )  with #sAC for the two thermal con- 
figurations studied, the duration of  the simulated 
experiment being held constant, t = 1000 s. Up to 
#sAC = 10 2 both series of  numerical points lie very 
close to the curve representing ~2, { being computed 
from equation (10). At higher #sAC, the damping is 
much less efficient than predicted, but this may be 
understood from the structure of the convective 
pattern. 
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log (~+Ac) 
Fig. 3. Variation of (D* D)/(D*-- D) with #sAC (symbols: 
numerical data for two values of the Grashof-Schmidt prod- 
uct (*: GrSc = 90. • GrSc = 360), full line: scaling analysis). 

Duration of the experiment: 1000 s. 

Indeed, as noted by Hart [3]+ at high values of M 
(or in our case flsAC), the flow is localized in thin 
boundary layers of  extent M ~ along the cavity walls. 
With regards to the scaling analysis of  ref. [2] that led 
to equations (6) and (14), such a structure violates the 
assumption of  regular variation of  both velocity and 
composition across the cavity. Another  possible 
explanation is that, as shown in Fig. 2, the flow is not 
purely parallel at high flsAC and so the conclusions 
drawn may thus not be valid. 

Another interesting parameter of  the solutal damp- 
ing efficiency problem is the duration of  the exper- 
iment. Its effect on ( D * - D ) / ( D * - D )  is presented in 
Fig. 4, the numerical data (symbols) being obtained 
from simulations carried out at flsAC = 10-2. The 
agreement with the curve representing ~2 is again sat- 
isfactory, and it appears clearly that the t ,:2 depen- 
dence of  the Rayleigh number leads to a significant 
decrease of  the damping efficiency with time. 

It should be kept in mind that numerous underlying 
assumptions were made to account for the solutal 
damping effect via equation (14). For  instance, we 
only consider a snapshot at the end of  the experiment. 
and one might have thought that an integration over 
the duration of  the process might have been necessary. 
However, in all the cases where the damping factor 
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Fig. 4. Variation of (D* -- D)/(D*- D) with the duration of 
the experiment for the case GrSc= 90 and #sAC= 10 : 

(symbols: numerical data, full line: scaling analysis). 
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depends moderately on M (e.g. up to flsAC = 10 -s in 
Fig. 3), such an averaging would not  dramatically 
alter the results. 

Similarly, due to the 1/4 power law dependence of 
M on Ras, a modification of either 6(0 or G in equa- 
tions (11) and (12)--for  instance through a relaxation 
of the condit ion D* = D- -would  have a minor effect 
on M. Thus, even if the stabilization of the flow 
depends on the position along the cavity, our arbitrary 
choices for equations (1 l) and (12) can be considered 
reasonable. 

Besides, it should be stressed that the aim of our 
theoretical approach is not  to get accurate estimates 
of the apparent diffusion coefficient (that is the pur- 
pose of the numerical simulations), but  rather to 
understand the physics of the transport  phenomena. 
In this sense, the point at t = 1000 s in Fig. 4 should 
not be considered significantly 'better '  than the others, 
the key result being the similar trend between the (2 
curve and the numerical data. 

The overall good agreement between theoretical 
predictions and numerical results can be taken as an 
indication that, in concentrated systems, the 
additional convective transport  scales with the square 
of the average fluid velocity, as observed previously 
[2] for the case of dilute alloys. Having gained con- 
fidence in the validity of our approach, we can now 
proceed to a discussion of the practical implications 
in terms of attainable accuracy of diffusion coefficient 
measurements. 

A look at Figs. 3 and 4 will convince the reader that 
even if some progress may be achieved, it is very 
difficult in practice to reach the purely diffusive trans- 
port conditions. Moreover, in a simulation performed 
with flsAC = 0.5 and t = 1000 s, the error function fit 
of  the obtained composition profile was not very good, 
and the deduced D* was seen to be higher than for the 
case flsAC = 0.1. Thus, a more effÉcient damping is no 
guarantee of a better diffusion coefficient estimate. 

To build a link between our modelling and the 
experimental conditions, let us turn to an estimation 
of typical flsAC values in experimental conditions for 
metallic or semiconducting liquid alloys. It is impor- 
tant to keep in mind that the error function fit can 
only be done if the diffusion coefficient is independent 
of concentration. The difference between the end com- 
positions AC = Co--C~ should thus be limited, an 
absolute value AC = 5 wt% being a maximum. 

Concerning fls, under the assumption of volume 
additivity, reasonable for liquid systems, the solutal 
expansion coefficient can be estimated from the for- 
mula giving an alloy mass density 

p = pApB/(XnpA +XApB) , (15) 

where XA, PA, XB, PB are the mass fractions and mass 
densities of component  A and B, respectively. Simple 
algebra indicates that fls will vary between PA/Pa-- l 
and PB/PA-- 1. In practice, the heavier component  in 
the diffusing couple should of course be placed at the 

bottom, otherwise the solutal effect would be desta- 
bilizing. 

In liquid metal alloys, the difference between the 
mass densities of the constituents may be quite high, 
leading to fls values, expressed in inverse weight frac- 
tion ranging from 0.1 to 2. O n  the other hand, fls is 
much smaller in semiconductors of the same class 
( I l l -V,  II-VI),  of the order of 0.05, with the exception 
of germanium in silicon (/3s = 1.2). For  typical exper- 
imental conditions, the product flsAC thus ranges 
between 10 4 and 10- ~. 

With a cell dimension of 10 - 3  m, a kinematic vis- 
cosity v = 3 10 -7 m 2 s t, and a diffusion coefficient 
D = 10 -8 m 2 s 1 characteristic of semiconductors, the 
Ras obtained from equations (1 I) and (12) using a 
value of flsAC = 10 -3 and a process time of one hour 
is Ras = - 1 5 0 .  The damping factor is then, from 
equation (10), ( =  0.77. Some solutal stabilization 
thus takes place, but  not enough to reach the purely 
diffusive conditions. 

For  liquid metals, keeping H = 10 3 m, v = 3 10 -7  

m 2s -t ,  t = 3 6 0 0 s ,  b u t w i t h D = 2  10 9 m  2s-~ and 
f l sAC= 10 2, we get R a s = - 1 7 0 0 0  and ~ = 2 . 4  
10 -2 . The damping would thus be very efficient, but 
one should keep in mind that equation (10) sig- 
nificantly overestimates the solutal stabilization at 
large Rayleigh numbers,  as was seen in Fig. 3. 

In our previous paper [2], we showed that sem- 
iconductors were less sensitive to the effect of  ther- 
mally driven convection, the key factor being their 
higher diffusivities. Solutal stabilization is here seen to 
be much more efficient for liquid metals, but  whether 
purely diffusive mass transport  conditions can be 
reached on earth remains more than questionable. 

At this point, we may wonder whether the measure- 
ments of diffusion coefficients in concentrated systems 
may be carried out in space, since the interaction of 
the solutal gradients with the residual gravity will 
drive some convective flow. The velocity induced is 
governed by the solutal Grashof  number  Grs = 
flsgGHa/v 2 and the additional contribution to mass 
transport should thus scale with (GrsSc) 2. 

One should be aware that GrsSc can be formally 
identified with the solutal Rayleigh number  intro- 
duced earlier in this section, but  the relevant physical 
mechanisms are totally different. Indeed, we have seen 
that in a vertical configuration, the effect of the axial 
composition gradient was to damp the fluid flow. On 
the contrary, in space experiments, this gradient is the 
convective driving force. 

In a typical space experiment in the NASA space 
shuttle, gravity is about  10 -4 weaker than on earth 
where, as indicated above, Ras is of the order of 150 
for semiconductors and 17 000 for metals. Relevant 
values of GrsSc are thus 1.5 x 10 -2 and 1.7, respec- 
tively. In comparison with our previous work [2], the 
configuration may appear quite different, since it is 
the interaction of an axial density gradient with a 
transverse gravity that drives the fluid flow. 

However, a closer look at the Navier-Stokes equa- 
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tions will convince the reader tha t  the relevant con- 
vective source is the vectorial p roduct  Vp x g, identical 
in bo th  cases. We may thus assume that ,  as derived in 
ref. [2], the error  induced by convection,  D * / D - I ,  
expressed in %, is equal to (GrsSc)2/4050. 

It is then clear that  for the derived values 
GrsSc = 1.5 x 10 2 and 1.7, the space experiments do 
take place under  purely diffusive t r anspor t  condit ions.  
However,  one should be aware that  in some special 
cases, where bo th  the composi t ion  range AC and the 
solutal expansion coefficient fls are large, the diameter  
of the capillary should be limited to guarantee  the 
validity of  the measurement ,  even in microgravity con- 
ditions. 

CONCLUDING REMARKS 

Our  purpose in this work was to test the validity 
of the effective diffusivity concept,  in t roduced in an 
earlier paper  [2], for the case of  t ranspor t  coefficient 
measurement  in concent ra ted  systems, where the 
interact ion between the hydrodynamic  and solutal 
fields leads to a reduction of  the convective velocity. 
The numerical  results indicate that ,  as predicted by 
our  scaling analysis [2], the error  induced by the fluid 
mot ion  scales with the square of  the convective 
velocity. The effective diffusivity concept  can thus be 
used to unders tand  the physics of  t ranspor t  phenom-  
ena in bo th  dilute and concent ra ted  systems. 

However,  even if such a concept  works well in 
diffusion coefficient measurement  configurat ions,  one 
should be aware tha t  it canno t  always be used to 
account  for the addi t ional  convective t ransport .  For  
instance, in the field of  crystal growth,  the solutal 
boundary  layer ahead of  the solidification interface 
tha t  scales with D in purely diffusive condi t ions  

becomes th inner  [5], and not  wider, as convect ion is 
increased. 

Concerning the solutal stabil ization of  the flow, the 
key result is tha t  even though  some damping  may be 
achieved, it is p robably  not  sufficient to guarantee  
purely diffusive mass t ranspor t  condit ions.  Measure-  
ments  are thus very difficult to perform on earth,  
especially in the case of  liquid metals tha t  are more 
sensitive to convection.  We also showed that  clean 
reference data  could always be obta ined  from 
measurements  in microgravity.  

Acknowledgements The present work was carried out in 
the frame of the GRAMME agreement between the Centre 
National d'Etudes Spatiales and the Commissariat fi I'Ener- 
gie Atomique, with financial support from the European 
Space Agency (ESTEC purchase order #135 095). J. P. Gar- 
andet would like to thank his friends J., Z., O. and F. for 
their help in improving the presentation of the manuscript. 
The authors are also indebted to Mr P. Boiton for the prep- 
aration of the drawings and to Dr B. Drevet for a careful 
reading of the manuscript. This text presents research results 
of the European Community Programme 'Human Capital 
and Mobility', with the support of the Commission in the 
frame of the network CHRX-CT930106. 

REFERENCES 

1. T. lida and R. L. Guthrie, The Physical Properties qf 
Liquid Metals, Chap. 7. Clarendon Press, Oxford (1993). 

2. J. P. Garandet, C. Barat and T. Duffar, On the effect of 
natural convection in mass transport measurements in 
dilute liquid alloys, Int. J. Heat Mass Tran~ffer 38, 2169 
2174 (1995). 

3. J. E. Hart, On sideways diffusive instability, J. Fluid Mech. 
49, 279 288 (1971). 

4. tt. S. Carslaw and J. C. Jaeger, Conduction q[' Heat in 
Solids, Chap. 2. Oxford University Press, Oxford (1959). 

5. J. P. Garandet, A. Rouzaud, T. Duffar and D. Camel, 
Comparison between order of magnitude and numerical 
estimates of the solute boundary layer in an idealised 
horizontal Bridgman configuration. J. Co'stal Growth 
113, 587-592 (1991). 


